Pseudospectral method for the ‘‘good” Boussinesq equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudospectral Method for the " Good " Boussinesq Equation

We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx + uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also reported.

متن کامل

A Fourier Pseudospectral Method for the “Good” Boussinesq Equation with Second-Order Temporal Accuracy

In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a ∞(0, T ∗;H 2) convergence for the solution and ∞(0, T ∗; 2)...

متن کامل

Trial Equation Method for Solving the Improved Boussinesq Equation

Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

Multi-symplectic Fourier Pseudospectral Method for the Nonlinear Schrödinger Equation

Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space [4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear Schrödinger equation with periodic boundary conditions ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1991

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1991-1079012-6